Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38659841

RESUMO

Background: Heart rhythm relies on complex interactions between the electrogenic membrane proteins and intracellular Ca 2+ signaling in sinoatrial node (SAN) myocytes; however, the mechanisms underlying the functional organization of the proteins involved in SAN pacemaking and its structural foundation remain elusive. Caveolae are nanoscale, plasma membrane pits that compartmentalize various ion channels and transporters, including those involved in SAN pacemaking, via binding with the caveolin-3 scaffolding protein, however the precise role of caveolae in cardiac pacemaker function is unknown. Our objective was to determine the role of caveolae in SAN pacemaking and dysfunction (SND). Methods: In vivo electrocardiogram monitoring, ex vivo optical mapping, in vitro confocal Ca 2+ imaging, immunofluorescent and electron microscopy analysis were performed in wild type, cardiac-specific caveolin-3 knockout, and 8-weeks post-myocardial infarction heart failure (HF) mice. SAN tissue samples from donor human hearts were used for biochemical studies. We utilized a novel 3-dimensional single SAN cell mathematical model to determine the functional outcomes of protein nanodomain-specific localization and redistribution in SAN pacemaking. Results: In both mouse and human SANs, caveolae compartmentalized HCN4, Ca v 1.2, Ca v 1.3, Ca v 3.1 and NCX1 proteins within discrete pacemaker signalosomes via direct association with caveolin-3. This compartmentalization positioned electrogenic sarcolemmal proteins near the subsarcolemmal sarcoplasmic reticulum (SR) membrane and ensured fast and robust activation of NCX1 by subsarcolemmal local SR Ca 2+ release events (LCRs), which diffuse across ∼15-nm subsarcolemmal cleft. Disruption of caveolae led to the development of SND via suppression of pacemaker automaticity through a 50% decrease of the L-type Ca 2+ current, a negative shift of the HCN current ( I f ) activation curve, and 40% reduction of Na + /Ca 2+ -exchanger function. These changes significantly decreased the SAN depolarizing force, both during diastolic depolarization and upstroke phase, leading to bradycardia, sinus pauses, recurrent development of SAN quiescence, and significant increase in heart rate lability. Computational modeling, supported by biochemical studies, identified NCX1 redistribution to extra-caveolar membrane as the primary mechanism of SAN pauses and quiescence due to the impaired ability of NCX1 to be effectively activated by LCRs and trigger action potentials. HF remodeling mirrored caveolae disruption leading to NCX1-LCR uncoupling and SND. Conclusions: SAN pacemaking is driven by complex protein interactions within a nanoscale caveolar pacemaker signalosome. Disruption of caveolae leads to SND, potentially representing a new dimension of SAN remodeling and providing a newly recognized target for therapy.

2.
bioRxiv ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38496584

RESUMO

BACKGROUND AND AIMS: Substantial sex-based differences have been reported in atrial fibrillation (AF), with female patients experiencing worse symptoms, increased complications from drug side effects or ablation, and elevated risk of AF-related stroke and mortality. Recent studies revealed sex-specific alterations in AF-associated Ca2+ dysregulation, whereby female cardiomyocytes more frequently exhibit potentially proarrhythmic Ca2+-driven instabilities compared to male cardiomyocytes. In this study, we aim to gain a mechanistic understanding of the Ca2+-handling disturbances and Ca2+-driven arrhythmogenic events in males vs females and establish their responses to Ca2+-targeted interventions. METHODS AND RESULTS: We incorporated known sex differences and AF-associated changes in the expression and phosphorylation of key Ca2+-handling proteins and in ultrastructural properties and dimensions of atrial cardiomyocytes into our recently developed 3D atrial cardiomyocyte model that couples electrophysiology with spatially detailed Ca2+-handling processes. Our simulations of quiescent cardiomyocytes show increased incidence of Ca2+ sparks in female vs male myocytes in AF, in agreement with previous experimental reports. Additionally, our female model exhibited elevated propensity to develop pacing-induced spontaneous Ca2+ releases (SCRs) and augmented beat-to-beat variability in action potential (AP)-elicited Ca2+ transients compared with the male model. Parameter sensitivity analysis uncovered precise arrhythmogenic contributions of each component that was implicated in sex and/or AF alterations. Specifically, increased ryanodine receptor phosphorylation in female AF cardiomyocytes emerged as the major SCR contributor, while reduced L-type Ca2+ current was protective against SCRs for male AF cardiomyocytes. Furthermore, simulations of tentative Ca2+-targeted interventions identified potential strategies to attenuate Ca2+-driven arrhythmogenic events in female atria (e.g., t-tubule restoration, and inhibition of ryanodine receptor and sarcoplasmic/endoplasmic reticulum Ca2+-ATPase), and revealed enhanced efficacy when applied in combination. CONCLUSIONS: Our sex-specific computational models of human atrial cardiomyocytes uncover increased propensity to Ca2+-driven arrhythmogenic events in female compared to male atrial cardiomyocytes in AF, and point to combined Ca2+-targeted interventions as promising approaches to treat AF in female patients. Our study establishes that AF treatment may benefit from sex-dependent strategies informed by sex-specific mechanisms.

3.
JACC Clin Electrophysiol ; 9(12): 2642-2648, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37768254

RESUMO

Despite evidence that women are at higher risk of drug-induced torsade de pointes and sudden cardiac death, female sex is vastly underrepresented in cardiovascular research, thus limiting our fundamental understanding of sex-specific arrhythmia mechanisms and our ability to predict arrhythmia propensity. To address this urgent clinical and preclinical need, we developed a quantitative tool that predicts the electrophysiological response to drug administration in female cardiomyocytes starting from data collected in males. We demonstrate the suitability of our translator for sex-specific cardiac safety assessment and include proof-of-concept application of our translator to in vitro and in vivo data.


Assuntos
Síndrome do QT Longo , Humanos , Masculino , Feminino , Síndrome do QT Longo/induzido quimicamente , Preparações Farmacêuticas , Eletrocardiografia , Coração , Arritmias Cardíacas/induzido quimicamente
4.
Am J Physiol Heart Circ Physiol ; 325(4): H896-H908, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37624096

RESUMO

By sensing changes in intracellular Ca2+, small-conductance Ca2+-activated K+ (SK) channels dynamically regulate the dynamics of the cardiac action potential (AP) on a beat-to-beat basis. Given their predominance in atria versus ventricles, SK channels are considered a promising atrial-selective pharmacological target against atrial fibrillation (AF), the most common cardiac arrhythmia. However, the precise contribution of SK current (ISK) to atrial arrhythmogenesis is poorly understood, and may potentially involve different mechanisms that depend on species, heart rates, and degree of AF-induced atrial remodeling. Both reduced and enhanced ISK have been linked to AF. Similarly, both SK channel up- and downregulation have been reported in chronic AF (cAF) versus normal sinus rhythm (nSR) patient samples. Here, we use our multiscale modeling framework to obtain mechanistic insights into the contribution of ISK in human atrial cardiomyocyte electrophysiology. We simulate several protocols to quantify how ISK modulation affects the regulation of AP duration (APD), Ca2+ transient, refractoriness, and occurrence of alternans and delayed afterdepolarizations (DADs). Our simulations show that ISK activation shortens the APD and atrial effective refractory period, limits Ca2+ cycling, and slightly increases the propensity for alternans in both nSR and cAF conditions. We also show that increasing ISK counteracts DAD development by enhancing the repolarization force that opposes the Ca2+-dependent depolarization. Taken together, our results suggest that increasing ISK in human atrial cardiomyocytes could promote reentry while protecting against triggered activity. Depending on the leading arrhythmogenic mechanism, ISK inhibition may thus be a beneficial or detrimental anti-AF strategy.NEW & NOTEWORTHY Using our established framework for human atrial myocyte simulations, we investigated the role of the small-conductance Ca2+-activated K+ current (ISK) in the regulation of cell function and the development of Ca2+-driven arrhythmias. We found that ISK inhibition, a promising atrial-selective pharmacological strategy against atrial fibrillation, counteracts the reentry-promoting abbreviation of atrial refractoriness, but renders human atrial myocytes more vulnerable to delayed afterdepolarizations, thus potentially increasing the propensity for ectopic (triggered) activity.


Assuntos
Fibrilação Atrial , Remodelamento Atrial , Humanos , Átrios do Coração , Doença do Sistema de Condução Cardíaco , Ventrículos do Coração , Eletrofisiologia
5.
Cardiovasc Res ; 119(13): 2294-2311, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37523735

RESUMO

AIMS: Atrial fibrillation (AF), the most prevalent clinical arrhythmia, is associated with atrial remodelling manifesting as acute and chronic alterations in expression, function, and regulation of atrial electrophysiological and Ca2+-handling processes. These AF-induced modifications crosstalk and propagate across spatial scales creating a complex pathophysiological network, which renders AF resistant to existing pharmacotherapies that predominantly target transmembrane ion channels. Developing innovative therapeutic strategies requires a systems approach to disentangle quantitatively the pro-arrhythmic contributions of individual AF-induced alterations. METHODS AND RESULTS: Here, we built a novel computational framework for simulating electrophysiology and Ca2+-handling in human atrial cardiomyocytes and tissues, and their regulation by key upstream signalling pathways [i.e. protein kinase A (PKA), and Ca2+/calmodulin-dependent protein kinase II (CaMKII)] involved in AF-pathogenesis. Populations of atrial cardiomyocyte models were constructed to determine the influence of subcellular ionic processes, signalling components, and regulatory networks on atrial arrhythmogenesis. Our results reveal a novel synergistic crosstalk between PKA and CaMKII that promotes atrial cardiomyocyte electrical instability and arrhythmogenic triggered activity. Simulations of heterogeneous tissue demonstrate that this cellular triggered activity is further amplified by CaMKII- and PKA-dependent alterations of tissue properties, further exacerbating atrial arrhythmogenesis. CONCLUSIONS: Our analysis reveals potential mechanisms by which the stress-associated adaptive changes turn into maladaptive pro-arrhythmic triggers at the cellular and tissue levels and identifies potential anti-AF targets. Collectively, our integrative approach is powerful and instrumental to assemble and reconcile existing knowledge into a systems network for identifying novel anti-AF targets and innovative approaches moving beyond the traditional ion channel-based strategy.

6.
J Mol Cell Cardiol ; 180: 33-43, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37149124

RESUMO

ß-adrenergic (ß-AR) signaling is essential for the adaptation of the heart to exercise and stress. Chronic stress leads to the activation of Ca2+/calmodulin-dependent kinase II (CaMKII) and protein kinase D (PKD). Unlike CaMKII, the effects of PKD on excitation-contraction coupling (ECC) remain unclear. To elucidate the mechanisms of PKD-dependent ECC regulation, we used hearts from cardiac-specific PKD1 knockout (PKD1 cKO) mice and wild-type (WT) littermates. We measured calcium transients (CaT), Ca2+ sparks, contraction and L-type Ca2+ current in paced cardiomyocytes under acute ß-AR stimulation with isoproterenol (ISO; 100 nM). Sarcoplasmic reticulum (SR) Ca2+ load was assessed by rapid caffeine (10 mM) induced Ca2+ release. Expression and phosphorylation of ECC proteins phospholambam (PLB), troponin I (TnI), ryanodine receptor (RyR), sarcoendoplasmic reticulum Ca2+ ATPase (SERCA) were evaluated by western blotting. At baseline, CaT amplitude and decay tau, Ca2+ spark frequency, SR Ca2+ load, L-type Ca2+ current, contractility, and expression and phosphorylation of ECC protein were all similar in PKD1 cKO vs. WT. However, PKD1 cKO cardiomyocytes presented a diminished ISO response vs. WT with less increase in CaT amplitude, slower [Ca2+]i decline, lower Ca2+ spark rate and lower RyR phosphorylation, but with similar SR Ca2+ load, L-type Ca2+ current, contraction and phosphorylation of PLB and TnI. We infer that the presence of PKD1 allows full cardiomyocyte ß-adrenergic responsiveness by allowing optimal enhancement in SR Ca2+ uptake and RyR sensitivity, but not altering L-type Ca2+ current, TnI phosphorylation or contractile response. Further studies are necessary to elucidate the specific mechanisms by which PKD1 is regulating RyR sensitivity. We conclude that the presence of basal PKD1 activity in cardiac ventricular myocytes contributes to normal ß-adrenergic responses in Ca2+ handling.


Assuntos
Adrenérgicos , Agonistas Adrenérgicos beta , Miócitos Cardíacos , Proteína Quinase C , Animais , Camundongos , Adrenérgicos/farmacologia , Agonistas Adrenérgicos beta/farmacologia , Agonistas Adrenérgicos beta/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Fosforilação , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Proteína Quinase C/genética
7.
Circ Res ; 132(9): e116-e133, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-36927079

RESUMO

BACKGROUND: Small-conductance Ca2+-activated K+ (SK)-channel inhibitors have antiarrhythmic effects in animal models of atrial fibrillation (AF), presenting a potential novel antiarrhythmic option. However, the regulation of SK-channels in human atrial cardiomyocytes and its modification in patients with AF are poorly understood and were the object of this study. METHODS: Apamin-sensitive SK-channel current (ISK) and action potentials were recorded in human right-atrial cardiomyocytes from sinus rhythm control (Ctl) patients or patients with (long-standing persistent) chronic AF (cAF). RESULTS: ISK was significantly higher, and apamin caused larger action potential prolongation in cAF- versus Ctl-cardiomyocytes. Sensitivity analyses in an in silico human atrial cardiomyocyte model identified IK1 and ISK as major regulators of repolarization. Increased ISK in cAF was not associated with increases in mRNA/protein levels of SK-channel subunits in either right- or left-atrial tissue homogenates or right-atrial cardiomyocytes, but the abundance of SK2 at the sarcolemma was larger in cAF versus Ctl in both tissue-slices and cardiomyocytes. Latrunculin-A and primaquine (anterograde and retrograde protein-trafficking inhibitors) eliminated the differences in SK2 membrane levels and ISK between Ctl- and cAF-cardiomyocytes. In addition, the phosphatase-inhibitor okadaic acid reduced ISK amplitude and abolished the difference between Ctl- and cAF-cardiomyocytes, indicating that reduced calmodulin-Thr80 phosphorylation due to increased protein phosphatase-2A levels in the SK-channel complex likely contribute to the greater ISK in cAF-cardiomyocytes. Finally, rapid electrical activation (5 Hz, 10 minutes) of Ctl-cardiomyocytes promoted SK2 membrane-localization, increased ISK and reduced action potential duration, effects greatly attenuated by apamin. Latrunculin-A or primaquine prevented the 5-Hz-induced ISK-upregulation. CONCLUSIONS: ISK is upregulated in patients with cAF due to enhanced channel function, mediated by phosphatase-2A-dependent calmodulin-Thr80 dephosphorylation and tachycardia-dependent enhanced trafficking and targeting of SK-channel subunits to the sarcolemma. The observed AF-associated increases in ISK, which promote reentry-stabilizing action potential duration shortening, suggest an important role for SK-channels in AF auto-promotion and provide a rationale for pursuing the antiarrhythmic effects of SK-channel inhibition in humans.


Assuntos
Fibrilação Atrial , Animais , Humanos , Fibrilação Atrial/metabolismo , Apamina/metabolismo , Apamina/farmacologia , Primaquina/metabolismo , Primaquina/farmacologia , Calmodulina/metabolismo , Átrios do Coração/metabolismo , Miócitos Cardíacos/metabolismo , Antiarrítmicos/uso terapêutico , Potenciais de Ação/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo
8.
J Physiol ; 601(13): 2685-2710, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36114707

RESUMO

Disruption of the transverse-axial tubule system (TATS) in diseases such as heart failure and atrial fibrillation occurs in combination with changes in the expression and distribution of key Ca2+ -handling proteins. Together this ultrastructural and ionic remodelling is associated with aberrant Ca2+ cycling and electrophysiological instabilities that underlie arrhythmic activity. However, due to the concurrent changes in TATs and Ca2+ -handling protein expression and localization that occur in disease it is difficult to distinguish their individual contributions to the arrhythmogenic state. To investigate this, we applied our novel 3D human atrial myocyte model with spatially detailed Ca2+ diffusion and TATS to investigate the isolated and interactive effects of changes in expression and localization of key Ca2+ -handling proteins and variable TATS density on Ca2+ -handling abnormality driven membrane instabilities. We show that modulating the expression and distribution of the sodium-calcium exchanger, ryanodine receptors and the sarcoplasmic reticulum (SR) Ca2+ buffer calsequestrin have varying pro- and anti-arrhythmic effects depending on the balance of opposing influences on SR Ca2+ leak-load and Ca2+ -voltage relationships. Interestingly, the impact of protein remodelling on Ca2+ -driven proarrhythmic behaviour varied dramatically depending on TATS density, with intermediately tubulated cells being more severely affected compared to detubulated and densely tubulated myocytes. This work provides novel mechanistic insight into the distinct and interactive consequences of TATS and Ca2+ -handling protein remodelling that underlies dysfunctional Ca2+ cycling and electrophysiological instability in disease. KEY POINTS: In our companion paper we developed a 3D human atrial myocyte model, coupling electrophysiology and Ca2+ handling with subcellular spatial details governed by the transverse-axial tubule system (TATS). Here we utilize this model to mechanistically examine the impact of TATS loss and changes in the expression and distribution of key Ca2+ -handling proteins known to be remodelled in disease on Ca2+ homeostasis and electrophysiological stability. We demonstrate that varying the expression and localization of these proteins has variable pro- and anti-arrhythmic effects with outcomes displaying dependence on TATS density. Whereas detubulated myocytes typically appear unaffected and densely tubulated cells seem protected, the arrhythmogenic effects of Ca2+ handling protein remodelling are profound in intermediately tubulated cells. Our work shows the interaction between TATS and Ca2+ -handling protein remodelling that underlies the Ca2+ -driven proarrhythmic behaviour observed in atrial fibrillation and may help to predict the effects of antiarrhythmic strategies at varying stages of ultrastructural remodelling.


Assuntos
Fibrilação Atrial , Humanos , Fibrilação Atrial/metabolismo , Átrios do Coração/metabolismo , Antiarrítmicos , Miócitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo , Proteínas , Cálcio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Sinalização do Cálcio
9.
J Physiol ; 601(13): 2655-2683, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36094888

RESUMO

Intracellular calcium (Ca2+ ) cycling is tightly regulated in the healthy heart ensuring effective contraction. This is achieved by transverse (t)-tubule membrane invaginations that facilitate close coupling of key Ca2+ -handling proteins such as the L-type Ca2+ channel and Na+ -Ca2+ exchanger (NCX) on the cell surface with ryanodine receptors (RyRs) on the intracellular Ca2+ store. Although less abundant and regular than in the ventricle, t-tubules also exist in atrial myocytes as a network of transverse invaginations with axial extensions known as the transverse-axial tubule system (TATS). In heart failure and atrial fibrillation, there is TATS remodelling that is associated with aberrant Ca2+ -handling and Ca2+ -induced arrhythmic activity; however, the mechanism underlying this is not fully understood. To address this, we developed a novel 3D human atrial myocyte model that couples electrophysiology and Ca2+ -handling with variable TATS organization and density. We extensively parameterized and validated our model against experimental data to build a robust tool examining TATS regulation of subcellular Ca2+ release. We found that varying TATS density and thus the localization of key Ca2+ -handling proteins has profound effects on Ca2+ handling. Following TATS loss, there is reduced NCX that results in increased cleft Ca2+ concentration through decreased Ca2+ extrusion. This elevated Ca2+ increases RyR open probability causing spontaneous Ca2+ releases and the promotion of arrhythmogenic waves (especially in the cell interior) leading to voltage instabilities through delayed afterdepolarizations. In summary, the present study demonstrates a mechanistic link between TATS remodelling and Ca2+ -driven proarrhythmic behaviour that probably reflects the arrhythmogenic state observed in disease. KEY POINTS: Transverse-axial tubule systems (TATS) modulate Ca2+ handling and excitation-contraction coupling in atrial myocytes, with TATS remodelling in heart failure and atrial fibrillation being associated with altered Ca2+ cycling and subsequent arrhythmogenesis. To investigate the poorly understood mechanisms linking TATS variation and spontaneous Ca2+ release, we built, parameterized and validated a 3D human atrial myocyte model coupling electrophysiology and spatially-detailed subcellular Ca2+ handling governed by the TATS. Simulated TATS loss causes diastolic Ca2+ and voltage instabilities through reduced Na+ -Ca2+ exchanger-mediated Ca2+ removal, cleft Ca2+ accumulation and increased ryanodine receptor open probability, resulting in spontaneous Ca2+ release and promotion of arrhythmogenic waves and delayed afterdepolarizations. At fast electrical rates typical of atrial tachycardia/fibrillation, spontaneous Ca2+ releases are larger and more frequent in the cell interior than at the periphery. Our work provides mechanistic insight into how atrial TATS remodelling can lead to Ca2+ -driven instabilities that may ultimately contribute to the arrhythmogenic state in disease.


Assuntos
Fibrilação Atrial , Insuficiência Cardíaca , Humanos , Fibrilação Atrial/metabolismo , Átrios do Coração/metabolismo , Retículo Sarcoplasmático/metabolismo , Miócitos Cardíacos/metabolismo , Sinalização do Cálcio , Proteínas , Cálcio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
10.
J Gen Physiol ; 154(12)2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36305844

RESUMO

The sympathetic nervous system fight-or-flight response is characterized by a rapid increase in heart rate, which is mediated by an increase in the spontaneous action potential (AP) firing rate of pacemaker cells in the sinoatrial node. Sympathetic neurons stimulate sinoatrial myocytes (SAMs) by activating ß adrenergic receptors (ßARs) and increasing cAMP. The funny current (If) is among the cAMP-sensitive currents in SAMs. If is critical for pacemaker activity, however, its role in the fight-or-flight response remains controversial. In this study, we used AP waveform analysis, machine learning, and dynamic clamp experiments in acutely isolated SAMs from mice to quantitatively define the AP waveform changes and role of If in the fight-or-flight increase in AP firing rate. We found that while ßAR stimulation significantly altered nearly all AP waveform parameters, the increase in firing rate was only correlated with changes in a subset of parameters (diastolic duration, late AP duration, and diastolic depolarization rate). Dynamic clamp injection of the ßAR-sensitive component of If showed that it accounts for ∼41% of the fight-or-flight increase in AP firing rate and 60% of the decrease in the interval between APs. Thus, If is an essential contributor to the fight-or-flight increase in heart rate.


Assuntos
Miócitos Cardíacos , Nó Sinoatrial , Animais , Camundongos , Nó Sinoatrial/fisiologia , Miócitos Cardíacos/fisiologia , Potenciais de Ação/fisiologia , Receptores Adrenérgicos beta , Frequência Cardíaca/fisiologia
11.
Elife ; 112022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36255053

RESUMO

Previously we showed the generation of a protein trap library made with the gene-break transposon (GBT) in zebrafish (Danio rerio) that could be used to facilitate novel functional genome annotation towards understanding molecular underpinnings of human diseases (Ichino et al, 2020). Here, we report a significant application of this library for discovering essential genes for heart rhythm disorders such as sick sinus syndrome (SSS). SSS is a group of heart rhythm disorders caused by malfunction of the sinus node, the heart's primary pacemaker. Partially owing to its aging-associated phenotypic manifestation and low expressivity, molecular mechanisms of SSS remain difficult to decipher. From 609 GBT lines screened, we generated a collection of 35 zebrafish insertional cardiac (ZIC) mutants in which each mutant traps a gene with cardiac expression. We further employed electrocardiographic measurements to screen these 35 ZIC lines and identified three GBT mutants with SSS-like phenotypes. More detailed functional studies on one of the arrhythmogenic mutants, GBT411, in both zebrafish and mouse models unveiled Dnajb6 as a novel SSS causative gene with a unique expression pattern within the subpopulation of sinus node pacemaker cells that partially overlaps with the expression of hyperpolarization activated cyclic nucleotide gated channel 4 (HCN4), supporting heterogeneity of the cardiac pacemaker cells.


Assuntos
Síndrome do Nó Sinusal , Peixe-Zebra , Camundongos , Animais , Humanos , Síndrome do Nó Sinusal/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Nó Sinoatrial/metabolismo , Fenótipo , Eletrocardiografia/efeitos adversos , Arritmias Cardíacas/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Choque Térmico HSP40/genética
12.
Sci Adv ; 7(47): eabg0927, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34788089

RESUMO

Animal experimentation is key in the evaluation of cardiac efficacy and safety of novel therapeutic compounds. However, interspecies differences in the mechanisms regulating excitation-contraction coupling can limit the translation of experimental findings from animal models to human physiology and undermine the assessment of drugs' efficacy and safety. Here, we built a suite of translators for quantitatively mapping electrophysiological responses in ventricular myocytes across species. We trained these statistical operators using a broad dataset obtained by simulating populations of our biophysically detailed computational models of action potential and Ca2+ transient in mouse, rabbit, and human. We then tested our translators against experimental data describing the response to stimuli, such as ion channel block, change in beating rate, and ß-adrenergic challenge. We demonstrate that this approach is well suited to predicting the effects of perturbations across different species or experimental conditions and suggest its integration into mechanistic studies and drug development pipelines.

13.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34260402

RESUMO

Sinoatrial node myocytes (SAMs) act as cardiac pacemaker cells by firing spontaneous action potentials (APs) that initiate each heartbeat. The funny current (If) is critical for the generation of these spontaneous APs; however, its precise role during the pacemaking cycle remains unresolved. Here, we used the AP-clamp technique to quantify If during the cardiac cycle in mouse SAMs. We found that If is persistently active throughout the sinoatrial AP, with surprisingly little voltage-dependent gating. As a consequence, it carries both inward and outward current around its reversal potential of -30 mV. Despite operating at only 2 to 5% of its maximal conductance, If carries a substantial fraction of both depolarizing and repolarizing net charge movement during the firing cycle. We also show that ß-adrenergic receptor stimulation increases the percentage of net depolarizing charge moved by If, consistent with a contribution of If to the fight-or-flight increase in heart rate. These properties were confirmed by heterologously expressed HCN4 channels and by mathematical models of If Modeling further suggested that the slow rates of activation and deactivation of the HCN4 isoform underlie the persistent activity of If during the sinoatrial AP. These results establish a new conceptual framework for the role of If in pacemaking, in which it operates at a very small fraction of maximal activation but nevertheless drives membrane potential oscillations in SAMs by providing substantial driving force in both inward and outward directions.


Assuntos
Relógios Biológicos/fisiologia , Fenômenos Eletrofisiológicos , Miócitos Cardíacos/fisiologia , Nó Sinoatrial/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Relógios Biológicos/efeitos dos fármacos , Simulação por Computador , Diástole/efeitos dos fármacos , Diástole/fisiologia , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Células HEK293 , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Ivabradina/farmacologia , Moduladores de Transporte de Membrana/farmacologia , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Nó Sinoatrial/efeitos dos fármacos
14.
Int J Mol Sci ; 22(11)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073281

RESUMO

Background: The mechanisms underlying dysfunction in the sinoatrial node (SAN), the heart's primary pacemaker, are incompletely understood. Electrical and Ca2+-handling remodeling have been implicated in SAN dysfunction associated with heart failure, aging, and diabetes. Cardiomyocyte [Na+]i is also elevated in these diseases, where it contributes to arrhythmogenesis. Here, we sought to investigate the largely unexplored role of Na+ homeostasis in SAN pacemaking and test whether [Na+]i dysregulation may contribute to SAN dysfunction. Methods: We developed a dataset-specific computational model of the murine SAN myocyte and simulated alterations in the major processes of Na+ entry (Na+/Ca2+ exchanger, NCX) and removal (Na+/K+ ATPase, NKA). Results: We found that changes in intracellular Na+ homeostatic processes dynamically regulate SAN electrophysiology. Mild reductions in NKA and NCX function increase myocyte firing rate, whereas a stronger reduction causes bursting activity and loss of automaticity. These pathologic phenotypes mimic those observed experimentally in NCX- and ankyrin-B-deficient mice due to altered feedback between the Ca2+ and membrane potential clocks underlying SAN firing. Conclusions: Our study generates new testable predictions and insight linking Na+ homeostasis to Ca2+ handling and membrane potential dynamics in SAN myocytes that may advance our understanding of SAN (dys)function.


Assuntos
Potenciais de Ação , Simulação por Computador , Modelos Cardiovasculares , Miócitos Cardíacos/metabolismo , Nó Sinoatrial/metabolismo , Sódio/metabolismo , Animais , Camundongos , Trocador de Sódio e Cálcio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
15.
Clin Pharmacol Ther ; 110(2): 380-391, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33772748

RESUMO

Torsade de Pointes (TdP), a rare but lethal ventricular arrhythmia, is a toxic side effect of many drugs. To assess TdP risk, safety regulatory guidelines require quantification of hERG channel block in vitro and QT interval prolongation in vivo for all new therapeutic compounds. Unfortunately, these have proven to be poor predictors of torsadogenic risk, and are likely to have prevented safe compounds from reaching clinical phases. Although this has stimulated numerous efforts to define new paradigms for cardiac safety, none of the recently developed strategies accounts for patient conditions. In particular, despite being a well-established independent risk factor for TdP, female sex is vastly under-represented in both basic research and clinical studies, and thus current TdP metrics are likely biased toward the male sex. Here, we apply statistical learning to synthetic data, generated by simulating drug effects on cardiac myocyte models capturing male and female electrophysiology, to develop new sex-specific classification frameworks for TdP risk. We show that (i) TdP classifiers require different features in females vs. males; (ii) male-based classifiers perform more poorly when applied to female data; and (iii) female-based classifier performance is largely unaffected by acute effects of hormones (i.e., during various phases of the menstrual cycle). Notably, when predicting TdP risk of intermediate drugs on female simulated data, male-biased predictive models consistently underestimate TdP risk in women. Therefore, we conclude that pipelines for preclinical cardiotoxicity risk assessment should consider sex as a key variable to avoid potentially life-threatening consequences for the female population.


Assuntos
Simulação por Computador , Aprendizado de Máquina , Torsades de Pointes/induzido quimicamente , Isótopos de Cálcio/metabolismo , Feminino , Humanos , Masculino , Modelos Biológicos , Miócitos Cardíacos/efeitos dos fármacos , Medição de Risco , Fatores de Risco , Fatores Sexuais
16.
Circ Res ; 127(9): 1159-1178, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32821022

RESUMO

RATIONALE: CaMKII (Ca2+-Calmodulin dependent protein kinase) δC activation is implicated in pathological progression of heart failure (HF) and CaMKIIδC transgenic mice rapidly develop HF and arrhythmias. However, little is known about early spatio-temporal Ca2+ handling and CaMKII activation in hypertrophy and HF. OBJECTIVE: To measure time- and location-dependent activation of CaMKIIδC signaling in adult ventricular cardiomyocytes, during transaortic constriction (TAC) and in CaMKIIδC transgenic mice. METHODS AND RESULTS: We used human tissue from nonfailing and HF hearts, 4 mouse lines: wild-type, KO (CaMKIIδ-knockout), CaMKIIδC transgenic in wild-type (TG), or KO background, and wild-type mice exposed to TAC. Confocal imaging and biochemistry revealed disproportional CaMKIIδC activation and accumulation in nuclear and perinuclear versus cytosolic regions at 5 days post-TAC. This CaMKIIδ activation caused a compensatory increase in sarcoplasmic reticulum Ca2+ content, Ca2+ transient amplitude, and [Ca2+] decline rates, with reduced phospholamban expression, all of which were most prominent near and in the nucleus. These early adaptive effects in TAC were entirely mimicked in young CaMKIIδ TG mice (6-8 weeks) where no overt cardiac dysfunction was present. The (peri)nuclear CaMKII accumulation also correlated with enhanced HDAC4 (histone deacetylase) nuclear export, creating a microdomain for transcriptional regulation. At longer times both TAC and TG mice progressed to overt HF (at 45 days and 11-13 weeks, respectively), during which time the compensatory Ca2+ transient effects reversed, but further increases in nuclear and time-averaged [Ca2+] and CaMKII activation occurred. CaMKIIδ TG mice lacking δB exhibited more severe HF, eccentric myocyte growth, and nuclear changes. Patient HF samples also showed greatly increased CaMKIIδ expression, especially for CaMKIIδC in nuclear fractions. CONCLUSIONS: We conclude that in early TAC perinuclear CaMKIIδC activation promotes adaptive increases in myocyte Ca2+ transients and nuclear transcriptional responses but that chronic progression of this nuclear Ca2+-CaMKIIδC axis contributes to eccentric hypertrophy and HF.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cálcio/metabolismo , Cardiomegalia/metabolismo , Insuficiência Cardíaca/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Aorta , Arritmias Cardíacas/etiologia , Proteínas de Ligação ao Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Estimulação Cardíaca Artificial , Cardiomegalia/patologia , Núcleo Celular/metabolismo , Constrição , Citosol/metabolismo , Progressão da Doença , Perfilação da Expressão Gênica , Insuficiência Cardíaca/etiologia , Histona Desacetilases/metabolismo , Humanos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Miócitos Cardíacos/citologia , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Fatores de Tempo , Ativação Transcricional
17.
Br J Pharmacol ; 177(19): 4497-4515, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32667679

RESUMO

BACKGROUND AND PURPOSE: Pharmacotherapy of atrial fibrillation (AF), the most common cardiac arrhythmia, remains unsatisfactory due to low efficacy and safety concerns. New therapeutic strategies target atrial-predominant ion-channels and involve multichannel block (poly)therapy. As AF is characterized by rapid and irregular atrial activations, compounds displaying potent antiarrhythmic effects at fast and minimal effects at slow rates are desirable. We present a novel systems pharmacology framework to quantitatively evaluate synergistic anti-AF effects of combined block of multiple atrial-predominant K+ currents (ultra-rapid delayed rectifier K+ current, IKur , small conductance Ca2+ -activated K+ current, IKCa , K2P 3.1 2-pore-domain K+ current, IK2P ) in AF. EXPERIMENTAL APPROACH: We constructed experimentally calibrated populations of virtual atrial myocyte models in normal sinus rhythm and AF-remodelled conditions using two distinct, well-established atrial models. Sensitivity analyses on our atrial populations was used to investigate the rate dependence of action potential duration (APD) changes due to blocking IKur , IK2P or IKCa and interactions caused by blocking of these currents in modulating APD. Block was simulated in both single myocytes and one-dimensional tissue strands to confirm insights from the sensitivity analyses and examine anti-arrhythmic effects of multi-atrial-predominant K+ current block in single cells and coupled tissue. KEY RESULTS: In both virtual atrial myocytes and tissues, multiple atrial-predominant K+ -current block promoted favourable positive rate-dependent APD prolongation and displayed positive rate-dependent synergy, that is, increasing synergistic antiarrhythmic effects at fast pacing versus slow rates. CONCLUSION AND IMPLICATIONS: Simultaneous block of multiple atrial-predominant K+ currents may be a valuable antiarrhythmic pharmacotherapeutic strategy for AF.


Assuntos
Fibrilação Atrial , Potenciais de Ação , Antiarrítmicos/farmacologia , Antiarrítmicos/uso terapêutico , Fibrilação Atrial/tratamento farmacológico , Simulação por Computador , Átrios do Coração , Humanos , Miócitos Cardíacos
18.
Circ Res ; 127(6): 796-810, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32507058

RESUMO

RATIONALE: Cardiotoxic ß1 adrenergic receptor (ß1AR)-CaMKII (calmodulin-dependent kinase II) signaling is a major and critical feature associated with development of heart failure. SAP97 (synapse-associated protein 97) is a multifunctional scaffold protein that binds directly to the C-terminus of ß1AR and organizes a receptor signalosome. OBJECTIVE: We aim to elucidate the dynamics of ß1AR-SAP97 signalosome and its potential role in chronic cardiotoxic ß1AR-CaMKII signaling that contributes to development of heart failure. METHODS AND RESULTS: The integrity of cardiac ß1AR-SAP97 complex was examined in heart failure. Cardiac-specific deletion of SAP97 was developed to examine ß1AR signaling in aging mice, after chronic adrenergic stimulation, and in pressure overload hypertrophic heart failure. We show that the ß1AR-SAP97 signaling complex is reduced in heart failure. Cardiac-specific deletion of SAP97 yields an aging-dependent cardiomyopathy and exacerbates cardiac dysfunction induced by chronic adrenergic stimulation and pressure overload, which are associated with elevated CaMKII activity. Loss of SAP97 promotes PKA (protein kinase A)-dependent association of ß1AR with arrestin2 and CaMKII and turns on an Epac (exchange protein directly activated by cAMP)-dependent activation of CaMKII, which drives detrimental functional and structural remodeling in myocardium. Moreover, we have identified that GRK5 (G-protein receptor kinase-5) is necessary to promote agonist-induced dissociation of SAP97 from ß1AR. Cardiac deletion of GRK5 prevents adrenergic-induced dissociation of ß1AR-SAP97 complex and increases in CaMKII activity in hearts. CONCLUSIONS: These data reveal a critical role of SAP97 in maintaining the integrity of cardiac ß1AR signaling and a detrimental cardiac GRK5-CaMKII axis that can be potentially targeted in heart failure therapy. Graphical Abstract: A graphical abstract is available for this article.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína 1 Homóloga a Discs-Large/metabolismo , Quinase 5 de Receptor Acoplado a Proteína G/metabolismo , Insuficiência Cardíaca/enzimologia , Miócitos Cardíacos/enzimologia , Receptores Adrenérgicos beta 1/metabolismo , Animais , Apoptose , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteína 1 Homóloga a Discs-Large/genética , Modelos Animais de Doenças , Acoplamento Excitação-Contração , Quinase 5 de Receptor Acoplado a Proteína G/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Miocárdica , Miócitos Cardíacos/patologia , beta-Arrestina 1/metabolismo
19.
Circ Res ; 126(7): 889-906, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32070187

RESUMO

RATIONALE: Hypokalemia occurs in up to 20% of hospitalized patients and is associated with increased incidence of ventricular and atrial fibrillation. It is unclear whether these differing types of arrhythmia result from direct and perhaps distinct effects of hypokalemia on cardiomyocytes. OBJECTIVE: To investigate proarrhythmic mechanisms of hypokalemia in ventricular and atrial myocytes. METHODS AND RESULTS: Experiments were performed in isolated rat myocytes exposed to simulated hypokalemia conditions (reduction of extracellular [K+] from 5.0 to 2.7 mmol/L) and supported by mathematical modeling studies. Ventricular cells subjected to hypokalemia exhibited Ca2+ overload and increased generation of both spontaneous Ca2+ waves and delayed afterdepolarizations. However, similar Ca2+-dependent spontaneous activity during hypokalemia was only observed in a minority of atrial cells that were observed to contain t-tubules. This effect was attributed to close functional pairing of the Na+-K+ ATPase and Na+-Ca2+ exchanger proteins within these structures, as reduction in Na+ pump activity locally inhibited Ca2+ extrusion. Ventricular myocytes and tubulated atrial myocytes additionally exhibited early afterdepolarizations during hypokalemia, associated with Ca2+ overload. However, early afterdepolarizations also occurred in untubulated atrial cells, despite Ca2+ quiescence. These phase-3 early afterdepolarizations were rather linked to reactivation of nonequilibrium Na+ current, as they were rapidly blocked by tetrodotoxin. Na+ current-driven early afterdepolarizations in untubulated atrial cells were enabled by membrane hyperpolarization during hypokalemia and short action potential configurations. Brief action potentials were in turn maintained by ultra-rapid K+ current (IKur); a current which was found to be absent in tubulated atrial myocytes and ventricular myocytes. CONCLUSIONS: Distinct mechanisms underlie hypokalemia-induced arrhythmia in the ventricle and atrium but also vary between atrial myocytes depending on subcellular structure and electrophysiology.


Assuntos
Arritmias Cardíacas/metabolismo , Fibrilação Atrial/metabolismo , Cálcio/metabolismo , Hipopotassemia/metabolismo , Miócitos Cardíacos/metabolismo , Potenciais de Ação , Animais , Arritmias Cardíacas/fisiopatologia , Fibrilação Atrial/fisiopatologia , Cálcio/fisiologia , Células Cultivadas , Átrios do Coração/citologia , Átrios do Coração/metabolismo , Ventrículos do Coração/citologia , Ventrículos do Coração/metabolismo , Humanos , Potássio/metabolismo , Ratos , Sódio/metabolismo , Trocador de Sódio e Cálcio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
20.
Clin Pharmacol Ther ; 107(1): 102-111, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31709525

RESUMO

This white paper presents principles for validating proarrhythmia risk prediction models for regulatory use as discussed at the In Silico Breakout Session of a Cardiac Safety Research Consortium/Health and Environmental Sciences Institute/US Food and Drug Administration-sponsored Think Tank Meeting on May 22, 2018. The meeting was convened to evaluate the progress in the development of a new cardiac safety paradigm, the Comprehensive in Vitro Proarrhythmia Assay (CiPA). The opinions regarding these principles reflect the collective views of those who participated in the discussion of this topic both at and after the breakout session. Although primarily discussed in the context of in silico models, these principles describe the interface between experimental input and model-based interpretation and are intended to be general enough to be applied to other types of nonclinical models for proarrhythmia assessment. This document was developed with the intention of providing a foundation for more consistency and harmonization in developing and validating different models for proarrhythmia risk prediction using the example of the CiPA paradigm.


Assuntos
Arritmias Cardíacas/induzido quimicamente , Simulação por Computador , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/etiologia , Medição de Risco/métodos , Arritmias Cardíacas/prevenção & controle , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/prevenção & controle , Humanos , Modelos Teóricos , Estudos de Validação como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...